| 
 
	
		| View previous topic :: View next topic |  
		| Author | Message |  
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Thu Apr 28, 2011 9:26 pm    Post subject: Puzzle 11/04/28: ~ Difficult |   |  
				| 
 |  
				|  	  | Hint wrote: |  	  | (early & late) 4-cell XY-Chain. 
 | 
 
  	  | Code: |  	  | +-----------------------+ | 9 5 . | . 4 . | 2 . . |
 | 2 7 . | 3 . . | 4 6 . |
 | . . 8 | . . 7 | 3 . 9 |
 |-------+-------+-------|
 | . 2 . | 4 . . | 9 . . |
 | 5 . . | . 2 3 | 6 . . |
 | . . 4 | . 6 . | . . . |
 |-------+-------+-------|
 | 8 1 9 | 5 3 . | . . 6 |
 | . 4 . | . . . | . 3 . |
 | . . 2 | . . . | 5 . 1 |
 +-----------------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 |  |  
		| Back to top |  |  
		|  |  
		| peterj 
 
 
 Joined: 26 Mar 2010
 Posts: 974
 Location: London, UK
 
 | 
			
				|  Posted: Fri Apr 29, 2011 8:11 am    Post subject: |   |  
				| 
 |  
				| A UR xy-wing.... 
 Danny, how is your UR in chain() routine coming along? ... should make some interesting puzzles. 	  | Quote: |  	  | (7=9)r6c4 - ur(67)r89c14[(9)r8c4=(8)r9c4] - (8=7)r9c5 ; r4c5<>7, r89c4<>7 | 
 |  |  
		| Back to top |  |  
		|  |  
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Fri Apr 29, 2011 3:40 pm    Post subject: |   |  
				| 
 |  
				|  	  | peterj wrote: |  	  | Danny, how is your UR in chain() routine coming along? ... should make some interesting puzzles. | 
 As you know from the pm that I sent, my SIN(network) routine now lists some interesting UR finds. What I did was add a UR detection sub-module to my routine that checks a grid for contradictions.
 
 Today, I'm going to see how far I can get towards adding simple internal/external UR strong links to my chain() routine. My chain() routine is complicated enough that I've been dragging my feet on revisiting it. While I'm there, I may finish altering the chain detection sub-modules to support ALS relationships. I've already altered the data structures. Then I might (eventually) add simple ALS structures to my chain() routine.
 
 Unfortunately, my puzzle generator is an offshoot of my first solver program. At some point, I may write a puzzle generator using my current solver and all of the additional techniques it supports. Right now, I generate puzzles with one set of logic, and then check them for interesting solutions using my current solver. It's a labor-intensive process to do a full cross-check of the puzzles. A process that I don't fully perform anymore.
 
 Regards, Danny
 
 
 ===== ===== ===== ===== ===== for those who might be interested
 
 Eureka Weekly Extreme #239 - SE 7.3
 
 
  	  | Code: |  	  | +-----------------------+ | . . . | . . . | . . . |
 | . . 9 | 4 7 3 | . . . |
 | . 3 . | . 1 . | . . 5 |
 |-------+-------+-------|
 | 6 8 1 | . 5 . | . . . |
 | . . . | . . . | . . . |
 | . . . | . 2 . | 9 1 3 |
 |-------+-------+-------|
 | 7 4 . | . . . | . 6 . |
 | . . . | 2 8 6 | 7 . . |
 | . . . | . . . | . . 9 |
 +-----------------------+
 
 | 
 
  	  | Code: |  	  | <12> UR r19c12 
 (7)r1c2  -                                               (  7)r3c3
 (6)r9c2  -                                   (  6)r2c2 = (6-7)r3c3
 (4)r1c1  -             (4=5)r6c1 - (5)r2c1 = (5-6)r2c2 = (6-7)r3c3
 (8)r19c1 - (8=4)r3c1 - (4=5)r6c1 - (5)r2c1 = (5-6)r2c2 = (6-7)r3c3
 -or-
 SIN assignments: 7r3c3  6r2c2  5r2c1  4r6c1  8r3c1  =>  <12> UR r19c12
 +-----------------------------------------------------------------------+
 | *12+48 *12+7   2478   |  89     6      5      |  12348  3479   12478  |
 |  1258   1256   9      |  4      7      3      |  1268   28     1268   |
 |  48     3      468-7  |  89     1      2      |  468    479    5      |
 |-----------------------+-----------------------+-----------------------|
 |  6      8      1      |  3      5      9      |  24     47     247    |
 |  39     29     23     |  1      4      7      |  568    58     68     |
 |  45     57     457    |  6      2      8      |  9      1      3      |
 |-----------------------+-----------------------+-----------------------|
 |  7      4      238    |  5      9      1      |  238    6      28     |
 |  39     159    35     |  2      8      6      |  7      34     14     |
 | *12+8  *12+6   268    |  7      3      4      |  1258   258    9      |
 +-----------------------------------------------------------------------+
 # 79 eliminations remain
 
 | 
 Note: If you take the longest chain and perform it right-to-left as a set of assignments, then you get the SIN assignment sequence. That's why the list of "deductive" chains align so nicely!
 |  |  
		| Back to top |  |  
		|  |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sat Apr 30, 2011 4:19 am    Post subject: |   |  
				| 
 |  
				| The 67 UR in boxes 78 needs an 8 in r9c4 or 9 in r8c4. The 8 forces a 9 in r6c6; r6c4<>9. Not sure how close this move is to Peter's. 
 
  	  | Code: |  	  | +--------+-------------+---------+
 | 9  5 3 | 68  4   16  | 2 17 78 |
 | 2  7 1 | 3   589 589 | 4 6  58 |
 | 4  6 8 | 2   15  7   | 3 15 9  |
 +--------+-------------+---------+
 | 1  2 6 | 4   578 58  | 9 57 3  |
 | 5  9 7 | 1   2   3   | 6 8  4  |
 | 3  8 4 | 79  6   59  | 1 2  57 |
 +--------+-------------+---------+
 | 8  1 9 | 5   3   2   | 7 4  6  |
 | 67 4 5 | 679 179 16  | 8 3  2  |
 | 67 3 2 | 678 78  4   | 5 9  1  |
 +--------+-------------+---------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 |  |  
		| Back to top |  |  
		|  |  
		|  |  
  
	| 
 
 | You cannot post new topics in this forum You cannot reply to topics in this forum
 You cannot edit your posts in this forum
 You cannot delete your posts in this forum
 You cannot vote in polls in this forum
 
 |  
 Powered by phpBB © 2001, 2005 phpBB Group
 
 |