| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Jan 08, 2010 5:58 pm    Post subject: Puzzle 10/01/08 (C) | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   +-----------------------+
 
 | 5 . . | . 7 . | . 4 . |
 
 | . 4 . | . . 9 | . . 8 |
 
 | . . 8 | . . . | 9 7 6 |
 
 |-------+-------+-------|
 
 | . . . | 7 . . | . . 5 |
 
 | 1 . . | . 5 . | . 3 . |
 
 | . 5 . | . . 3 | . . . |
 
 |-------+-------+-------|
 
 | . . 1 | . . . | . . 7 |
 
 | 3 . 5 | . 8 . | . 2 1 |
 
 | . 7 4 | 1 . . | 8 9 . |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Sat Jan 09, 2010 1:15 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Three moves.
 
 	  | Quote: | 	 		  xy-chain: (3=1)r1c7 - (1=5)r2c8 - (5=6)r7c8 - (6=4)r7c6 - (4=1)r3c6 - (1=3)r3c2; r1c2<>2
 
xy-wing 1-36,
 
type 1 UR27.
 
 | 	  
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Sun Jan 10, 2010 8:52 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| I needed to look at the implications of a potential 27 DP in boxes 46. Every way of killing the DP placed a 3 in r1c7 and that reduced the grid to a BUG+1. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Sun Jan 10, 2010 10:02 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Two Steps: 	  | Quote: | 	 		  (3)-r3c5=(3-1)r3c2=(1)r1c2-(1=3)r1c7-(3)r1c4=(3)r7c4 
 
=> r1c4,r7c5<>3
 
later an xy-wing 168 is needed | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Mon Jan 11, 2010 1:06 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Marty R. wrote: | 	 		  | I needed to look at the implications of a potential 27 DP in boxes 46. Every way of killing the DP placed a 3 in r1c7 and that reduced the grid to a BUG+1. | 	  
 
 
Marty,
 
 
I also looked at the UR27, but viewed it as a Type 2 situation that deleted 6 in r5c246. I do not recall why I did not use this move but it was not as fruitful as your analysis of the same conditions. 
 
 
What I find particularly interesting is that when both your action and the Type 2 action are combined, the UR27 becomes a one stepper      
 
 
It is also unusual that one pattern deletes/forces results on more than a single digit.
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		Marty R.
 
 
  Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
  | 
		
			
				 Posted: Mon Jan 11, 2010 4:43 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				| I didn't see anything that I recognized as a Type 2. All four cells had at least three candidates and examining the implications is basically trial and error, except with a pattern as a starting point rather than a guess. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Mon Jan 11, 2010 7:25 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 
 
looks like a type 2 to me. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Mon Jan 11, 2010 8:15 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				There are two UR patterns present in the same cells. I've seen this combination of URs occur several times previously. In this case, a total of five eliminations in [r5].
 
 
 	  | Code: | 	 		   +-----------------------------------------------------------------------+
 
 |  5      136    9      |  368    7      168    |  13     4      2      |
 
 |  7      4      36     |  2      136    9      |  135    15     8      |
 
 |  2      13     8      |  5      134    14     |  9      7      6      |
 
 |-----------------------+-----------------------+-----------------------|
 
 |  49     368    236    |  7      1469   12468  |  126    168    5      |
 
 |  1      68    *27+6   |  4689   5      2468   | *27+6   3      49     |
 
 |  49     5     *27     |  68     16     3      | *27     168    49     |
 
 |-----------------------+-----------------------+-----------------------|
 
 |  8      2      1      |  39     39     46     |  456    56     7      |
 
 |  3      9      5      |  46     8      7      |  46     2      1      |
 
 |  6      7      4      |  1      2      5      |  8      9      3      |
 
 +-----------------------------------------------------------------------+
 
 # 61 eliminations remain
 
 
 r56c37  <27> UR Type 2                  <> 6    r5c246
 
 r56c37  <27> UR Type 4                  <> 2    r5c37
 
 | 	  
 
HoDoKu also reports UR Type 3 exists. Boy, is this puzzle fun!
 
 
 	  | Code: | 	 		  Uniqueness Test 3: 2/7 in r56c37 => r5c46<>68   -- < 68 > pair
 
Uniqueness Test 3: 2/7 in r56c37 => r5c6<>468   -- <4689> quad
 
 | 	  
 
I believe this is why it's recommended that you search for a Type 4 after other UR Types in a possible DP.
 
 
I'm unaware that the UR forces r1c7=3. However, a gM-Wing completes the puzzle after my UR eliminations. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Mon Jan 11, 2010 12:47 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | daj95376 wrote: | 	 		  There are two UR patterns present in the same cells. I've seen this combination of URs occur several times previously. In this case, a total of five eliminations in [r5].
 
 
 	  | Code: | 	 		   +-----------------------------------------------------------------------+
 
 |  5      136    9      |  368    7      168    |  13     4      2      |
 
 |  7      4      36     |  2      136    9      |  135    15     8      |
 
 |  2      13     8      |  5      134    14     |  9      7      6      |
 
 |-----------------------+-----------------------+-----------------------|
 
 |  49     368    236    |  7      1469   12468  |  126    168    5      |
 
 |  1      68    *27+6   |  4689   5      2468   | *27+6   3      49     |
 
 |  49     5     *27     |  68     16     3      | *27     168    49     |
 
 |-----------------------+-----------------------+-----------------------|
 
 |  8      2      1      |  39     39     46     |  456    56     7      |
 
 |  3      9      5      |  46     8      7      |  46     2      1      |
 
 |  6      7      4      |  1      2      5      |  8      9      3      |
 
 +-----------------------------------------------------------------------+
 
 # 61 eliminations remain
 
 
 r56c37  <27> UR Type 2                  <> 6    r5c246
 
 r56c37  <27> UR Type 4                  <2> r5c46<>68   -- <68> pair
 
Uniqueness Test 3: 2/7 in r56c37 => r5c6<>468   -- <4689> quad
 
 | 	  
 
I believe this is why it's recommended that you search for a Type 4 after other UR Types in a possible DP.
 
 
I'm unaware that the UR forces r1c7=3. However, a gM-Wing completes the puzzle after my UR eliminations. | 	  
 
 
 
Danny, either r5c3=6 or r5c7=6 to prevent the DP.
 
(6)r5c3 - (6=3)r2c3 - (3)r2c7 = (3)r1c7,
 
(6)r5c7 - r8c7 = r8c4 - (6=4)r7c6 - (4=1)r3c6 - (1)r2c5 = ss[(36)r2c35] - (3)r2c7 = (3)r1c7.
 
Thus, both conditions to prevent the DP force r1c7=3.
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Mon Jan 11, 2010 6:28 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | tlanglet wrote: | 	 		  Danny, either r5c3=6 or r5c7=6 to prevent the DP.
 
(6)r5c3 - (6=3)r2c3 - (3)r2c7 = (3)r1c7,
 
(6)r5c7 - r8c7 = r8c4 - (6=4)r7c6 - (4=1)r3c6 - (1)r2c5 = ss[(36)r2c35] - (3)r2c7 = (3)r1c7.
 
Thus, both conditions to prevent the DP force r1c7=3.
 
 | 	  
 
Ted: Thanks for the explanation. Since r5c3=6 is in the solution for the puzzle, I'd already verified that it led to r1c7=3. But, for r5c7=6, I kept coming up with chains that performed r1c7<>3. I feel better now about Marty's r1c7=3. Good catch guys!
 
 
Regards, Danny | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |