| 
 
	
		| View previous topic :: View next topic |  
		| Author | Message |  
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Sun Apr 24, 2011 5:18 pm    Post subject: Rambling: UR with a Chain Segment |   |  
				| 
 |  
				| While working through Mike Barker's collection of UR puzzles designed to crack with one technique, I encountered this puzzle ... and a different UR solution. 
 First, there is an X-Wing on <2> in the UR cells. This limits r4c3=6 and/or r5c5=6 as the only exterior possibilities in [b4] and [b5] to break the <26> UR. So, at least one of these statements must be true. Normally, this leads to eliminations r4c6,r5c2<>6 and nothing more. They don't crack the puzzle.
 
 
  	  | Code: |  	  | +--------------------------------------------------------------+ |  7     369   68    |  49    2     56    |  38    345   1     |
 |  2     4     5     |  8     13    13    |  6     9     7     |
 |  89    369   1     |  49    56    7     |  2     345   358   |
 |--------------------+--------------------+--------------------|
 |  89   *26+9  68    |  1     4    *26+39 |  7     35    359   |
 |  3    *26+9  7     |  5     68   *26+9  |  4     1     89    |
 |  5     1     4     |  7     38    39    |  389   6     2     |
 |--------------------+--------------------+--------------------|
 |  6     5     3     |  2     9     8     |  1     7     4     |
 |  1     8     9     |  3     7     4     |  5     2     6     |
 |  4     7     2     |  6     15    15    |  39    8     39    |
 +--------------------------------------------------------------+
 # 43 eliminations remain
 
 | 
 However, this chain segment also exists:
 
 
  	  | Code: |  	  | (6)r4c3 = r45c2 - r3c2 = r3c5 - (6)r5c5 
 | 
 It says: if r4c3<>6 then r5c5<>6 as well. This leaves only one conclusion: r4c3=6 -- which cracks the puzzle.
 |  |  
		| Back to top |  |  
		|  |  
		| peterj 
 
 
 Joined: 26 Mar 2010
 Posts: 974
 Location: London, UK
 
 | 
			
				|  Posted: Sun Apr 24, 2011 8:45 pm    Post subject: |   |  
				| 
 |  
				| Nice. Another view of it would be like a turbot/er where one strong link on 6 is created by the UR? 
  	  | Code: |  	  | (6)r1c6=r3c5 - ur(26)r45c26[(6)r5c5=r4c3] ; r1c3<>6 so r4c3=6 | 
 |  |  
		| Back to top |  |  
		|  |  
		| ronk 
 
 
 Joined: 07 May 2006
 Posts: 398
 
 
 | 
			
				|  Posted: Sun Apr 24, 2011 11:21 pm    Post subject: Chains with UR segments |   |  
				| 
 |  
				| daj95376, I think Chain with a UR segment would be a better description than UR with a chain segment. [edit: Hmm, guess that's what peterj already said.] |  |  
		| Back to top |  |  
		|  |  
		| Asellus 
 
 
 Joined: 05 Jun 2007
 Posts: 865
 Location: Sonoma County, CA, USA
 
 | 
			
				|  Posted: Sun Apr 24, 2011 11:48 pm    Post subject: |   |  
				| 
 |  
				| It's even easier to see as an ER (or conjugate pair) in box 2 resulting in r1c3<>6.  (Same as Peterj again.) 
 Or, you could state the external UR inference as (6)r13c2=(6)r1c6 and get r1c3<>6 directly.
 |  |  
		| Back to top |  |  
		|  |  
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Mon Apr 25, 2011 12:26 am    Post subject: |   |  
				| 
 |  
				| Thanks Peter, Ron, and Asellus !!! I like your general consensus. 
 I'm hoping to soon add internal/external strong inferences to my chains() routine. With the altered perspective you (pl.) provided, that will now prove productive on puzzles (like this one) where it won't be necessary to include the inner workings of the UR.
 
 Regards, Danny
 |  |  
		| Back to top |  |  
		|  |  
		|  |  
  
	| 
 
 | You cannot post new topics in this forum You cannot reply to topics in this forum
 You cannot edit your posts in this forum
 You cannot delete your posts in this forum
 You cannot vote in polls in this forum
 
 |  
 Powered by phpBB © 2001, 2005 phpBB Group
 
 |