| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Wed Sep 15, 2010 4:40 am    Post subject: Puzzle 10/09/15: Extreme |   |  
				| 
 |  
				| Most of the reasonable puzzles are posted from my current collection. I'll generate more soon. However, I have a number of difficult and extreme puzzles remaining. So, I'm clearing some out.
 
 
  	  | Code: |  	  | +-----------------------+ | . 1 4 | 3 . 7 | 6 . . |
 | 8 . 9 | 4 . . | 3 2 . |
 | . . . | 9 . . | . . . |
 |-------+-------+-------|
 | 3 . 6 | . . 9 | 2 . . |
 | . 5 . | . 8 . | . . . |
 | 2 . . | 1 . 6 | . . . |
 |-------+-------+-------|
 | 7 . . | 6 . . | 9 . . |
 | . 4 . | . . . | . 5 . |
 | . . . | . . . | . . . |
 +-----------------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Wed Sep 15, 2010 12:00 pm    Post subject: |   |  
				| 
 |  
				| Not that easy to find a minimal set of steps of depth less than or equal to 4  ... 
  	  | Quote: |  	  | 3-SIS Grouped X Chain (1)R2C7R7 : => r78c6<>1 3-SIS M Wing (58) : (85)R9C4 5B7 8R7 : (8)r9c4=(8)r7c8 : => r9c78<>8
 4-SIS XY Chain or ALS XY Wing (145-8) : (81)R8C7, (14)R9C7, (45=8)R9C46 : => r8c4<>8
 3-SIS S Wing : 5R2 (54)R9C6 4C7 : (5)r2c9=(4)r3c7 : => r3c7<>5
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| peterj 
 
 
 Joined: 26 Mar 2010
 Posts: 974
 Location: London, UK
 
 | 
			
				|  Posted: Wed Sep 15, 2010 8:16 pm    Post subject: |   |  
				| 
 |  
				| Three steps - first a bit mucky! 
  	  | Quote: |  	  | AIC (3=2)r7c2 - r7c9=(2-3*-7)r9c9=(7-3)r9c8=r7c89 ; r7c35<>3 (Not sure how to notate but essentially the strong link on 2 and 7 in b9 stop either r9c89 being 3...)
 sashimi x-wing(1) ; r7c89<>1
 xy-chain ; (5=1)r2c9 - (1=5)r2c6 - (5=4)r9c6 - (4=1)r9c7 - (1=8)r8c7 - (8=5)r6c7 ; r6c9<>5, r3c7<>5
 | 
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Thu Sep 16, 2010 1:46 am    Post subject: |   |  
				| 
 |  
				| Peter: How about applying your logic from right-to-left? (for easier interpretation) 
 
  	  | Code: |  	  | (3)r7c89 = (37-2)r9c89 = (2)r7c9 - (2=3)r7c2 - loop  =>  r7c35<>3 (for starters) +-----------------------------------------------------------------------+
 |  5      1      4      |  3      2      7      |  6      9      8      |
 |  8      7      9      |  4      6      15     |  3      2      15     |
 |  6      23     23     |  9      15     8      |  145    147    1457   |
 |-----------------------+-----------------------+-----------------------|
 |  3      8      6      |  57     457    9      |  2      14     145    |
 |  4      5      1      |  2      8      3      |  7      6      9      |
 |  2      9      7      |  1      45     6      |  458    348    345    |
 |-----------------------+-----------------------+-----------------------|
 |  7      23     2358   |  6      135    1245   |  9      1348   1234   |
 |  19     4      238    |  78     1379   12     |  18     5      6      |
 |  19     6      2358   |  58     1359   1245   |  148    13478  12347  |
 +-----------------------------------------------------------------------+
 # 70 eliminations remain
 
 | 
 More eliminations possible because of the continuous loop _
  _ 
 I refuse to admit how long I stared at the AHP(37)r9c89 before realizing it could be put into play. _
  _ 
 Last edited by daj95376 on Thu Sep 16, 2010 2:04 am; edited 1 time in total
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Thu Sep 16, 2010 2:02 am    Post subject: |   |  
				| 
 |  
				|  	  | peterj wrote: |  	  | AIC (3=2)r7c2 - r7c9=(2-3*-7)r9c9=(7-3)r9c8=r7c89 ; r7c35<>3 (Not sure how to notate but essentially the strong link on 2 and 7 in b9 stop either r9c89 being 3...)
 | 
 Peter : you have written your first AIC as a "Transport" or "Transfer" Matrix :
 
 
  	  | Code: |  	  | .---------------------.---------------------.---------------------. | 5      1      4     | 3      2      7     | 6      9      8     |
 | 8      7      9     | 4      6      15    | 3      2      15    |
 | 6      23     23    | 9      15     8     | 145    147    1457  |
 :---------------------+---------------------+---------------------:
 | 3      8      6     | 57     457    9     | 2      14     145   |
 | 4      5      1     | 2      8      3     | 7      6      9     |
 | 2      9      7     | 1      45     6     | 458    348    345   |
 :---------------------+---------------------+---------------------:
 | 7      23     2358  | 6      135    1245  | 9      1348   1234  |
 | 19     4      238   | 78     1379   12    | 18     5      6     |
 | 19     6      2358  | 58     1359   1245  | 148    13478  12347 |
 '---------------------'---------------------'---------------------'
 
 (32)R7C2 : (3)r7c2 (2)r7c2
 2B9 .... : ....... (2)r7c9 (2)r9c9
 7B9 .... : ....... ....... (7)r9c9 (7)r9c8
 3B9 .... : ....... ....... (3)r9c9 (3)r9c8 (3)r7c89
 
 -> (3)r7c2=(3)r7c89 : => r7c35<>3 (Here, the first column identifies the SIS used in each row).
 | 
 This suggests writing down the AIC as :
 
 4-SIS AIC : (32)R7C2 [2B9 7B9] 3B9 : (3=2)r7c2-r7c9=HP(27)r9c89-(3)r9c89=r7c89 : => r7c35<>3Furthermore, the AIC is a continuous network disguised in a good looking continuous nice loop (no need of a 20 feet pole to tackle it ...  ). The weak links are thus strong : r7c36<>2, r9c89 contains 237 at most or r9c89<>148. 
 BTW, I had these last eliminations from the following 6-SIS AIC : NP(27)r9c89=(2)r7c9-(2=3)r7c2-r7c8=NT(148)B9 : => r9c89<>148. You did a better job with the HP(27)B9
   
 Further comments :
 
 If the last entry in the Transport Matrix is written in the first column, one obtains a 4x4 Symmetric Pigeonhole Matrix : each row contains at least one truth and each column contains at most one truth => each column is a derived SIS. In details :
 
 
  	  | Code: |  	  | SIS\WIS + 3r7..... 2r7..... *r9c9... *r9c8 ---------+-------------------------------------
 (32)R7C2 + (3)r7c2. (2)r7c2
 2B9 .... + ........ (2)r7c9. (2)r9c9
 7B9 .... + ........ ........ (7)r9c9. (7)r9c8
 3B9 .... + (3)r7c89 ........ (3)r9c9. (3)r9c8
 ---------+-------------------------------------
 => Elim. + (3)r7c35 (2)r7c36 (14)r9c9 (148)r9c8
 | 
 Regards, JC
 [edit : typos corrected and addition of overlooked eliminations on 2
  - Thanks Danny for checking !] 
 Last edited by JC Van Hay on Thu Sep 16, 2010 2:37 am; edited 3 times in total
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Thu Sep 16, 2010 6:41 am    Post subject: |   |  
				| 
 |  
				| This puzzle earned its rating. Six eliminations on <1> that weaken it for a 5-SIS on two values across eight cells. 
 
  	  | Code: |  	  | r89c15  <19> UR Type 4.2244             r89c5<>1 
 c57\r37 Sashimi X-Wing                  <> 1    r7c89
 
 r7  b8  Locked Candidate 2              <> 1    r89c6
 
 +-----------------------------------------------------------------------+
 |  5      1      4      |  3      2      7      |  6      9      8      |
 |  8      7      9      |  4      6     a15     |  3      2      15     |
 |  6      23     23     |  9     b15     8      | c145    147    1457   |
 |-----------------------+-----------------------+-----------------------|
 |  3      8      6      |  57     457    9      |  2      14     145    |
 |  4      5      1      |  2      8      3      |  7      6      9      |
 |  2      9      7      |  1      45     6      | d458   e348    345    |
 |-----------------------+-----------------------+-----------------------|
 |  7      23    g2358   |  6      135    145    |  9     f348    234    |
 |  19     4      38     |  78     379    2      |  18     5      6      |
 |  19     6     h2358   |  58     359    4-5    |  148    13478  12347  |
 +-----------------------------------------------------------------------+
 # 61 eliminations remain
 
 (5)r2c6 = r3c5 - r3c7 = (5-8)r6c7 = r6c8 - r7c8 = (8-5)r7c3 = (5)r9c3  =>  r9c6<>5
 
 | 
 Translation for JC:
 
 
  	  | Code: |  	  | 5B2 5C7 8R6 8R7 5C3 : (5)r2c6 = (5)r9c3 : => r9c6<>5 
 | 
 With that, it's obvious that I need to get some sleep. Goodnight!
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| peterj 
 
 
 Joined: 26 Mar 2010
 Posts: 974
 Location: London, UK
 
 | 
			
				|  Posted: Thu Sep 16, 2010 7:03 am    Post subject: |   |  
				| 
 |  
				| Danny, JC, thanks for taking the time to look at my move! There is something about AHPs that makes them particularly hard to see - actually even plain HPs I usually come to from the corresponding quad/quin.
 It definitely had a 'network' feel to it - but I felt in mitigation that is more like a side-effect than a real branching of the chain!
  The AHP/ANQ is much cleaner. |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Thu Sep 16, 2010 10:24 am    Post subject: |   |  
				| 
 |  
				| Peter : HPs and AHPs are easily detected while pencilmarking if the bi-locals are tagged at the same time.  For an HP, there are 2 cells containing the same pair of 2 digits carrying the same tags in a box (..),  in a row (--) or in a column (||) and for an AHP, one of the 2 cells associated with the bi-locals is a "hub" cell. 
 BTW, your 3rd move is identical to a 3-SIS S Wing (45)R9C6.  In this way, your solution becomes perfect (3 steps of depth <= 4).
 
 Danny :
  , your solution .... Thanks a lot for your enjoyable tailored puzzles  They are of great help to make progress in solving even tougher puzzles. 
 Regards, JC
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| tlanglet 
 
 
 Joined: 17 Oct 2007
 Posts: 2468
 Location: Northern California Foothills
 
 | 
			
				|  Posted: Thu Sep 16, 2010 1:58 pm    Post subject: |   |  
				| 
 |  
				| Peter, that was a great move   
 I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later.....
 
 Ted
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| ttt 
 
 
 Joined: 06 Dec 2008
 Posts: 42
 Location: vietnam
 
 | 
			
				|  Posted: Thu Sep 16, 2010 4:54 pm    Post subject: |   |  
				| 
 |  
				|  	  | tlanglet wrote: |  	  | I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later..... | 
 On my experience, to solve sudoku puzzles (supported by SS solver & SudoCue solver – Ruud’s solver: to see bilocations) I always consider AHP first. Don’t know that is useful for you or not...
   
 BTW, Danny: I don’t think we are on difference sudoku universe, we are the same sudoku universe...
   Again, I had drunk too much... tonight
   
 ttt
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Thu Sep 16, 2010 5:37 pm    Post subject: |   |  
				| 
 |  
				| Type 4 UR (19) ER (1)
 Type 1 UR (23)
 Multi-coloring (1)
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| tlanglet 
 
 
 Joined: 17 Oct 2007
 Posts: 2468
 Location: Northern California Foothills
 
 | 
			
				|  Posted: Fri Sep 17, 2010 2:25 am    Post subject: |   |  
				| 
 |  
				|  	  | ttt wrote: |  	  |  	  | tlanglet wrote: |  	  | I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later..... | 
 On my experience, to solve sudoku puzzles (supported by SS solver & SudoCue solver – Ruud’s solver: to see bilocations) I always consider AHP first. Don’t know that is useful for you or not...
   
 ttt
 | 
 
 Thanks ttt for the suggestion. In fact, based on studying solutions I found on Eureka, I have concluded AN(PTQ) and AH(PTQ) along with chains are the normal type of steps to unravel difficult puzzles. In this case, I did find a couple of interesting "almosts" but they did not seem to  offer further usefulness. It is great fun to solve a  difficult puzzle, but every good step is also a small victory.
 
 Ted
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |