| 
 
	
		| View previous topic :: View next topic |  
		| Author | Message |  
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sat Aug 19, 2006 9:08 am    Post subject: DB Saturday Puzzle - August 19, 2006 |   |  
				| 
 |  
				| After finding a Unique Rectangle I am stuck for the moment. 
 Keith
 
  	  | Code: |  	  | Puzzle: DB081906  ****** +-------+-------+-------+
 | . . . | . . . | 3 7 . |
 | . . . | 8 . 5 | 9 4 . |
 | . . . | 2 . 7 | 8 . 5 |
 +-------+-------+-------+
 | 4 . 9 | . . . | . 5 . |
 | . 5 . | . 8 . | . 3 . |
 | . 7 . | . . . | 2 . 4 |
 +-------+-------+-------+
 | 2 . 5 | 3 . 4 | . . . |
 | . 4 3 | 9 . 8 | . . . |
 | . 1 6 | . . . | . . . |
 +-------+-------+-------+
 | 
 |  |  
		| Back to top |  |  
		|  |  
		| ravel 
 
 
 Joined: 21 Apr 2006
 Posts: 536
 
 
 | 
			
				|  Posted: Sat Aug 19, 2006 1:28 pm    Post subject: |   |  
				| 
 |  
				| With 3 strong links the 6 in r5c6 can be eliminated (r5c1-r2c1,r2c9-r3c8,r6c8-r6c4). 	  | Code: |  	  | *-----------------------------------------------------------* | 5     89    48    | 16    49   A16    | 3     7     2     |
 | 16    2     7     | 8     3     5     | 9     4     16    |
 | 39    36    14    | 2     49    7     | 8     16    5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16    5     2     | 4     8    A1-69  | 167   3     79    |
 |B38    7    B18    |B16    5    A39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16    4     | 167   1689  79    |
 | 7     4     3     | 9     16    8     | 5     2     16    |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*
 
 | 
 And there is an ALS, where the 3 is locked to r6c6 in A (1369) and to r6c1 in B (1368), when r4c6=6. But as always i first found a chain and then constructed the ALS.
 |  |  
		| Back to top |  |  
		|  |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sat Aug 19, 2006 3:15 pm    Post subject: |   |  
				| 
 |  
				|  	  | Quote: |  	  | And there is an ALS, | 
 
 What's that stand for, other than the dreaded disease?
 |  |  
		| Back to top |  |  
		|  |  
		| TKiel 
 
 
 Joined: 22 Feb 2006
 Posts: 292
 Location: Kalamazoo, MI
 
 | 
			
				|  Posted: Sat Aug 19, 2006 3:20 pm    Post subject: |   |  
				| 
 |  
				| Almost Locked Set.  Not sure what the definition is. 
 Nice little puzzle, as usual.  I tried like heck to make an XY-chain with all the (1,6) pairs but never could get a result.  Finally realized it almost had to be an XY-wing, which took a while to find as there were many possibilities.
 |  |  
		| Back to top |  |  
		|  |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Sat Aug 19, 2006 5:17 pm    Post subject: |   |  
				| 
 |  
				| I also wanted to use the remote pairs technique with 16, but couldn't. I also couldn't find any X-Wings, XY-Wings, strong links, etc., so I had to rely on the old standby, the chain. |  |  
		| Back to top |  |  
		|  |  
		| ravel 
 
 
 Joined: 21 Apr 2006
 Posts: 536
 
 
 | 
			
				|  Posted: Sat Aug 19, 2006 9:41 pm    Post subject: |   |  
				| 
 |  
				| Hi Marty, 
 here is the original ALS link, but i am sure, you dont need it
  |  |  
		| Back to top |  |  
		|  |  
		| David Bryant 
 
 
 Joined: 29 Jul 2005
 Posts: 559
 Location: Denver, Colorado
 
 | 
			
				|  Posted: Sat Aug 19, 2006 11:58 pm    Post subject: Finding the chain of remote pairs |   |  
				| 
 |  
				|  	  | Marty R wrote: |  	  | I also wanted to use the remote pairs technique with 16, but couldn't. | 
 Here's how I used the "double-implication chain" technique to extend the chain of remote pairs far enough to crack this puzzle.
 
  	  | Code: |  	  | *-----------------------------------------------------------* | 5     89    48    | 16    49    16    | 3     7     2     |
 | 16+   2     7     | 8     3     5     | 9     4     16-   |
 | 39    36    14    | 2     49    7     | 8     16+   5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16-   5     2     | 4     8     169   | 167   3     79    |
 | 38    7     18    | 16    5     39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16+   4     | 167   1689* 79    |
 | 7     4     3     | 9     16-   8     | 5     2     16+   |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*
 | 
 As indicated by the +/- signs above, there's already an extensive network of {1, 6} pairs spreading throughout the puzzle. Our "target" cell -- the one needed to make useful inferences from the pattern -- is r7c8, marked with an asterisk above.
 
 We start the double-implication chain in r2c1.
 
 A. r2c1 = 1 ==> r5c1 = 6 ==> r6c3 = 1 ==> r6c4 = 6 ==> r6c8 = 9 ==> r9c8 = 8 ==> {1, 6} at r7c8.
 
 B1. r2c1 = 6 ==> r5c1 = 1 ==> r4c2 = 6 ==> r4c7 = 1
 B2. r2c1 = 6 ==> r2c9 = 1 ==> r3c8 = 6
 B3 (r4c7 = 1 & r3c8 = 6) ==> r6c8 = 9 ==> r9c8 = 8 ==> {1, 6} at r7c8.
 
 So the double-implication chain reveals that neither "8" nor "9" can appear at r7c8, leaving the grid looking like this.
 
  	  | Code: |  	  | *-----------------------------------------------------------* | 5     89    48    | 16    49    16    | 3     7     2     |
 | 16+   2     7     | 8     3     5     | 9     4     16-   |
 | 39    36    14    | 2     49    7     | 8     16+   5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16-   5     2     | 4     8     169   | 167   3     79    |
 | 38    7     18    | 16    5     39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16+   4     | 167   16-   79    |
 | 7     4     3     | 9     16-   8     | 5     2     16+   |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*
 | 
 Now we see that r7c7 = 7, and that r6c8 = 9, after which we can extend the {1, 6} network a bit farther, and the entire puzzle falls to pieces.  dcb
 |  |  
		| Back to top |  |  
		|  |  
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Sun Aug 20, 2006 10:40 am    Post subject: Another (neat) solution |   |  
				| 
 |  
				| Here's what I did.  After the usaul basic moves, and a Type 1 UR to remove <16> in R6C6: 
 
  	  | Code: |  	  | +----------------+----------------+----------------+ | 5    89   48   | 16   49   16   | 3    7    2    |
 | 16   2    7    | 8    3    5    | 9    4    16   |
 | 39   36B  14   | 2    49   7    | 8    16b  5    |
 +----------------+----------------+----------------+
 | 4    36b  9    | 7    2    136  | 16   5    8    |
 | 16B  5    2    | 4    8    169c | 167  3    79   |
 | 38   7    18   | 16a  5    39   | 2    169A 4    |
 +----------------+----------------+----------------+
 | 2    89   5    | 3    16   4    | 167  1689 79   |
 | 7    4    3    | 9    16   8    | 5    2    16   |
 | 89   1    6    | 5    7    2    | 4    89   3    |
 +----------------+----------------+----------------+
 | 
 Ravel also found this.  I applied the logic of a fork or skyscraper:
 If a is <6>, c is not <6>.
 If a is not <6>, A is <6>, b is not <6>, B is <6>, and c is not <6>.
 So, remove <6> from R5C6.
 
 Now, a short chain:
 R6C4 = <1> results in R5C6 = <9> and R6C6 = <3>.
 R6C4 = <1> results in R5C3 = <8> and R6C1 = <3>.
 So, R6C4 = <6>, which after some more basic moves brings us here:
 
  	  | Code: |  	  | +----------------+----------------+----------------+ | 5    89   48   | 1    49   6    | 3    7    2    |
 | 16   2    7    | 8    3    5    | 9    4    16   |
 | 39   36   14   | 2    49   7    | 8    16   5    |
 +----------------+----------------+----------------+
 | 4    36   9    | 7    2    13   | 16   5    8    |
 | 16   5    2    | 4    8    19   | 167  3    79   |
 | 38   7    18   | 6    5    39   | 2    19   4    |
 +----------------+----------------+----------------+
 | 2    89   5    | 3    16   4    | 17   1689 79   |
 | 7    4    3    | 9    16   8    | 5    2    16   |
 | 89   1    6    | 5    7    2    | 4    89   3    |
 +----------------+----------------+----------------+
 | 
 
 There is an X-wing on <1> in R36(C38) which takes out <1> in R7C8.
 
 There is an XY-wing on <361> in R45 which takes out <1> in R5C6.
 There is an XY-wing on <391> in R6C6 which takes out <1> in R4C7.
 
 Either of these XY-wings solves the puzzle.
 
 Keith
 |  |  
		| Back to top |  |  
		|  |  
		|  |  
  
	| 
 
 | You cannot post new topics in this forum You cannot reply to topics in this forum
 You cannot edit your posts in this forum
 You cannot delete your posts in this forum
 You cannot vote in polls in this forum
 
 |  
 Powered by phpBB © 2001, 2005 phpBB Group
 
 |